Arithmetics on number systems with irrational bases
نویسندگان
چکیده
For irrational β > 1 we consider the set Fin(β) of real numbers for which |x| has a finite number of non-zero digits in its expansion in base β. In particular, we consider the set of β-integers, i.e. numbers whose β-expansion is of the form ∑n i=0 xiβ , n ≥ 0. We discuss some necessary and some sufficient conditions for Fin(β) to be a ring. We also describe methods to estimate the number of fractional digits that appear by addition or multiplication of βintegers. We apply these methods among others to the real solution β of x3 = x2 + x+ 1, the so-called Tribonacci number. In this case we show that multiplication of arbitrary β-integers has a fractional part of length at most 5. We show an example of a β-integer x such that x ·x has the fractional part of length 4. By that we improve the bound provided by Messaoudi [11] from value 9 to 5; in the same time we refute the conjecture of Arnoux that 3 is the maximal number of fractional digits appearing in Tribonacci multiplication.
منابع مشابه
Mayan and Babylonian Arithmetics Can Be Explained by the Need to Minimize Computations
Most number systems use a single base – e.g., 10 or 2 – and represent each number as a combination of powers of the base. However, historically, there were two civilizations that used a more complex systems to represent numbers. They also used bases: Babylonians used 60 and Mayans used 20, but for each power, instead of a single digit, they used two. For example, a number 19 was represented by ...
متن کاملOn the complexity of algebraic numbers I. Expansions in integer bases
Let b ≥ 2 be an integer. We prove that the b-ary expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.
متن کاملOn Subrecursive Representability of Irrational Numbers, Part II
We consider various ways to represent irrational numbers by subrecursive functions. An irrational number can be represented by its base-b expansion; by its base-b sum approximation from below; and by its base-b sum approximation from above. Let S be a class of subrecursive functions, e.g., the class the primitive recursive functions. The set of irrational numbers that can be obtained by functio...
متن کاملConnecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics
We describe how we connected three programs that compute Gröbner bases [1] to Coq [11], to do automated proofs on algebraic, geometrical and arithmetical expressions. The result is a set of Coq tactics and a certificate mechanism 1. The programs are: F4 [5], GB [4], and gbcoq [10]. F4 and GB are the fastest (up to our knowledge) available programs that compute Gröbner bases. Gbcoq is slow in ge...
متن کاملContinued Fractions, Diophantine Approximations, and Design of Color Transforms
We study a problem of approximate computation of color transforms (with real and possibly irrational factors) using integer arithmetics. We show that precision of such computations can be significantly improved if we allow input or output variables to be scaled by some constant. The problem of finding such a constant turns out to be related to the classic Diophantine approximation problem. We u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003